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The separation of aqueous ions by ion-exchange chromatography is striaght-

forward and can be performed routinely. Unfortunately, the sensitive detection

of the separated ions, specifically inorganic ions, is not as simple as

their separation. Recently, suitable detection schemes to measure the con-

ductivity of flowing chromatographic eluents have been developed [1-4].

These detectors allow convenient monitoring of 1ow-pKd-Value ions that cannot

be measured by optical absorption or electrochemical means. The technique,

termed ion chromatography, has adequate sensitivity for many applications [5]

and is currently a rapidly growing area of research.

One problem associated with the use of conductivity detectors for ion

chromatography (IC) is the high conductance of solvents needed to achieve

separation of the sample ions. Two approaches have been successfully employed

to cope with this difficulty; the background conductance of the solvent can

be suppressed chemically or electronically.

Chemical suppression of conductance was developed first [1]. In this

approach, a column is placed in series with the analytical column. This

"suppressor" column contains an ion-exchange resin capable of reducing (by

acid-base neutralization) the conductance of the solvent. Sample ion con- W

ductivity is then measured against a much lower background conductance. The

use of two columns in this approach has several minor drawbacks. Separation

is slowed, chromatographic resolution is reduced, sensitivity is lowered

slightly, and suppressor column regeneration can interrupt determinations.

However, these problems can be overcome or tolerated and conveniently used

systems are now commercially available.

Electronic suppression of solvent conductance requires only one column

and offers high-speed separation and better chromatographic resolution than

the two-column systems. It is also inherently more simple and reliable, but
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requires the measurement of small conductance chanoes in the presence of the

relatively high solvent conductance. Appropriately, the emphasis in this area

of single-column technology is in the development of low-capacity ion-exchange

resins for use with low-conductance solvents [2-4]. Ion separation units based

on this latter scheme are also commercially available.

Conductivity measurements themselves have several drawbacks, the most

important of which are limited sensitivity and an intolerance to temperature

changes. Conductivity values can vary by as much as 0.5-3%/*C [6]. Accord-

ingly, conductivity detectors must be carefully thermostated or must use

reference cells for temperature compensation [7].

Another type of single-column IC technology has recently been reported

[8]. Indirect photometric chromatography measures the transparent sample

ion concentration by monitoring the changes in absorbance that the solute

causes in a photometrically absorbing solvent. This alternative technique

offers high-speed separations and good resolution. Under carefully selected

conditions, sensitive measurement of ions is possible; however, determinations

performed in this manner are restricted to solvent systems that have adequate

absorbances at chromatographically useful concentrations. Importantly,

weakly conducting but separable ions can be determined with this detector

and its temperature dependence is negligible.

The purpose of the present paper is to describe and evaluate a new

detector for ion chromatography which exhibits higher sensitivity than the

designs described above, yet is universally applicable to all ions separable

by IC. Importantly, the scheme is useful for the detection of both conducting

and relatively nonconducting anions or cations and is almost completely

temperature insensitive. This new technique, which we term Replacement

e !: J i
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Ion Chromatography (RIC) is introduced here as a method for cation measure-

ment and employs flame photometric detection. However, alternative appli-

cations and experimental arrangements are possible and will be suggested.

RIC is a concept where sample ions are first separated chromatographically

and are then stoichiometrically replaced in the eluent by an ion that can

be detected more sensitively than the sample ion itself. Nadmeyer, Lamb

and coworkers [9,10] have replaced divalent sample cations with H+ to improve

conductivity measurements in systems using Pb+2 eluents with precipitation

suppressors. Instabilities caused by pH effects wire also minimized. In

the example of cation chromatography presented here, sample cations are

stoichiometrically replaced by Li+ . The eluent is then directed to a flame

photometer dedicated to lithium measurement. Chromatograms are therefore

simply a plot of lithium concentration as a function of time. Qualitative

identification of individual ions is made by means of their retention times,

the same procedure used with conductivity (or other nonspecific) detectors.

Either peak height or peak area can be used for quantitation.

In this first example of RIC with flame photometric detection, several

distinct advantages are realized. First, lithium (and therefore sample

cations) can be measured very sensitively; detection limits for lithium

in flame emission photometers are well below the part-per-billion level

[11). The reasons for this high sensitivity are the very low spectral back-

ground from hydrogen-air flames at the Li 670 nm spectral line and the small

spin-orbit splitting in the 22PV, *_-2 2SA transitions in lithium [12,13].

Second, calibration curves are linear over several orders of magnitude of

concentration. Third, the detector is relatively insensitive to fluctuations

in ambient temperature; and finally it is amenable to the quantitatlon of

nonconducting or weakly conducting ions.

I.m



5

In its present embodiment, RIC is implemented by placing an ion-exchange

column between the separator (analytical) column and the flame photometric

detector. This "replacement" column contains a pretreated ion-exchange

resin with the same polarity as the separator column, in a specific ionic

form. The ions (here, Li+ ) bound to the replacement column have a relatively

low affinity for the resin compared to sample ions. Therefore, as sample

ions enter the replacement column, they become bound to the resin and displace

the replacement ions (Li+) into the eluent. Charge balance assures that a

stoichiometric exchange occurs, producing reliable, quantitative measurements.

A detector for RIC can therefore be dedicated to the monitoring of a single

ionic species: the replacement ion.

A detector dedicated to the measurement of a single ionic species can

be optimized for that function and should be an inherently sensitive device,

especially when the detector is mass sensitive, as is the flame photometer.

Moreover, only a single ionic species is needed for calibration, assuming

unity replacement efficiency. Of course, peak areas would be utilized in

single-ion calibration.

EXPERIMENTAL

A modular liquid chromatograph was constructed and coupled to a laboratory-

assembled flame photometer. The liquid chromatograph consisted of a high-

pressure pump (Milton Roy Co. mini Pump, Riviera Beach, FL), a four-port

injector valve (Altex model 210, Berkeley, CA) and a 0.25-mL sample loop.

A commercial 25-cm cation column (Wescan Instruments, Santa Clara, CA) was

used to separate sample cations. Suppressor and replacement columns were

constructed from 0.25-in. o.d. stainless steel tubing. Bio-Rad AG1-X8 anion

exchange resin was used to pack the suppressor columns whereas a Dowex
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50W-X8 cation exchanger was used in the replacement columns. Columns of

different lengths and internal diameters and containing resin of different

particle sizes were constructed for testing. Dry-resin packing procedures

produced columns that were superior to those which were slurry-packed.

Modular flexibility was provided by appropriate low-dead-volume chromato-

graphic fittings (Swagelock model SS-400-6-1LV, Crawford Fitting Co.,

Niagara Falls, Ontario).

The flame photometer consisted of a total-consumption air-hydrogen

burner (Beckman Instruments, Inc., Fullerton, CA), a 50-cm focal-length,

40-rm diameter lens (Ealing Optics, South Natick, MA), a small monochromator,

operated with a spectral bandpass of 0.67 nm (JY H-20,Instruments SA, Inc.,

Metuchen, NJ) and a red-sensitive photomultiplier tube (model R446, Hamamatsu

Corp., Middlesex, NJ). The output photocurrent was amplified by an electrometer

(model 610 A, Keithley Instruments, Inc., Cleveland, OH), filtered by a

passive RC filter with a one-second time constant and recorded on a strip-

chart recorder ('todel SR-204, Heath Co., Benton Harbor, MI).

In this work, the suppressor column was prepared in the hydroxide form

whereas the replacement column was converted after packing to the lithium

form. These two columns were simultaneous regenerated, when necessary,

with 1 M LIOH, and were subsequently rinsed with deionized water.

RESULTS AND DISCUSSION

Table I lists the order of relative affinity of various cations for the

cation exchange resin [14] used here in the replacement step of RIC; those

cations with higher affinity values will displace those of lower affinity.

Because lithium has the lowest affinity for the resin, it can serve as a

JI ]-:
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universal replacement cation. Conveniently, Li is also one of the most

sensitive elements for determination by flame emission photometry, making

it an ideal choice for the replacement ion in RIC. Figure 1 illustrates

the absolute sensitivity achievable with the flame photometric detector

in the absence of significant degredation of chromatographic resolution.

A detection limit of 0.1 narts-per-billion (14 nM) is calculated. Clearly,

this method of detection shows excellent promise as a sensitive detector

for ion chromatography.

In addition, the analytical working curves produced with this method

were nearly identical to those of conventional flame photometers for alkali

metals [12]. At very low Li concentrations (', 10-1 M), the classical ionization

upward curvature is found, while at high Li concentrations (> 10- 3 M), self-

absorption is observed. The net result is a sigmoidal-shaped working curve

with Its linear region between 10-6 and 10- 3 M.

Of course, under conditions of high concentration, cations with lesser

affinity for a resin can displace those with greater affinity, a property

exploited during column regeneration. In addition, an ion of lower affinity

than others serves as a convenient eluting reagent for those others, the

reason that I+ is often used to separate monovalent cations. Unfortunately,

hydrogen ion used as an eluent would displace lithium quantitatively from

the resin in the replacement column. To lower the concentration of H+, a

basic suppressor column is used in the present RIC procedure to raise the

pH of the acidic eluent before it enters the replacement column. Without

this suppressor column, lithium would be continuously displaced from the

replacement column (Li bleed), requiring frequent regeneration of the column,

producing an inordinately high flame photometric background and reducing

L-
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measurement sensitivity and precision. Incidentally, the lithium signal

level shown in Fig. 1 is the theoretical level of lithium bleed from the

three-column system if the suppressor column raised the pH of the acidic

eluent to pH 7 an~d if no residual cation concentration in the system were

above l0- 7 M.

Repeated injection of 0.25-mL samples of monovalent cations (cf. Fig. 2)

produced RIC peak areas that were reproducible to within 3% relative standard

deviation for concentrations above 0.1 mM. Unfortunately, results obtained

below 0.1 mM (0.05-0.01 atI) were irreproducible and limited sensitivity to

above 0.01 mM. The cause of this loss in precision was traced to the suppressor

column, where sample cations were apparently being retained. Interestingly,

the Li+ counter ion of the hydroxide solution used for suppressor regeneration

was also retained, even after rinsing with copious amounts of deionized

water. These retained cations bled slowly from the suppressor column and

produced a substantial Li background signal, thereby further degrading

detection of sample-generated peaks.

With a replacement column installed, a chromatogram of monovalent

cations such as that shown in Fig. 2 can be generated. In Fig. 2, a slight

deterioration of chromatographic resolution can be noted because of dead

volume produced by the suppressor and replacement columns and fittings that

connect them. Clearly, smaller particle sizes in these two post-columns

would improve resolution. Importantly, the individual peak areas in Fig.

2 are equivalent to within the accuracy of manual measurement, reflecting

the equimolar cation concentration in the original sample and verifying

that the replacement phenomenon proceeds quantitatively. Peak area calibration

for all ions should therefore be possible by use of a series of standards,

containing a single ion (e.g. Li+).

'L Ill'*

- ~ - - - - - - . - -- - - - - - - - - - -
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By Isolating each of the columns, it was found that most of the degredation

of chromatographic resolution caused by the three-column system was associated

with the replacement column. Improved replacement columns are now being tested

to reduce this loss of resolution. No modifications of the total-consumption

burner were made to decrease the dead volume of the detector. However,

chromatograms obtained with this burner provided superior resolution to

that obtained earlier with a premix burner-flame system.

Sensitivity provided by the present instrument, like precision, Is

linked to Li+ bleed from the three-column system. In most experiments,

overall bleed produced a Li+ concentration in the replacement-column effluent

of approximately 0.010-0.020 nmM. Eluent fractions collected at various

points in the system Indicated that the 12.5-cm suppressor column changed

the pH of the 3.14 mM nitric acid solvent from 2.5 (entering) to 5.5 (leaving).

However, the replacement column then raised the pH to 6.5, indicating that

hydrogen ion attack of the replacement column was responsible for some

background Li bleed. A longer suppressor column (25 cm) improved this

undesirable situation, but exacerbated the problem of physical loss of

sample cations in the suppressor column. Flame photometric examination

of the fractions collected for pH determination showed that the majority

of the Li present in the eluent originated in the suppressor column, and

was a reminant of the regeneration process. Other bases, NaOH and KOH,

used for regeneration exhibited the same behavior and produced subsequent

Li bleed from the replacement column.

Importantly, earlier experimental results obtained with a Li 670 nm

tnterference filter (bandpass 8 nm) are similar to those presented here.

However, the narrow spectral bandpass of the monochromator rejects unwanted

light from room illumination.
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It should be possible also to separate and quantitate divalent cations

by RIC. However, if divalent cations are to be determined and if flame

photometric detection is employed, it becomes critical that the suppressor

column be extremely efficient in removing eluent cations from the system.

The relatively high affinity of divalent cations for the resin in the replace-

ment column would otherwise lead to an extremely high lithium background

and would make sensitive measurements impossible.

Unfortunately, hydroxide suppressor columns used in conjunction ith

ethylenediamine or copper (II) eluents have not been very successf v

applied to the separation and measurement of divalent cations such the

alkaline earths. Exposure to basic conditions (pH 10.5) in the sui 3r

column can increase sample losses there. Also, the relatively large

dissociation constant for ethylenediamine (K8  = 8.5 x lO- ) prohibits complete

charge neutralization, even at high (> 11) pH. Without charge neutralization,

the replacement column resin exhibits severe Li bleed and undergoes irre-

versible attack by NH2CZH 4NH3
+.

Lower-pH suppressor columns have been used in precipitation reactions

with Pb (i1) eluents [9,10] with good success for divalent cation separations.

However, treatment of spent suppressor columns is cumbersome with this

procedure. In preliminary experiments, we have had the best success with

a hydroxide-suppressed Cu (II) system. Mg+ 2 and Ca+' are easily separated

and both replace LI extremely well. Unfortunately, the precipitation of

Cu(OH) 2 involved in this procedure quickly results in high column back-

pressure, lengthens elution time and severely broadens chromatographic

peaks. In addition, the precipitation-suppression reaction was not completely

efficient; a 25-cm suppressor column could change the Cu+2 concentration
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in the eluent only from 4.0 mM (entering) to about 0.4 mM (leaving). This

high residual Cu+2 concentration produced, of course, an unwanted Li bleed

from the replacement column. Capture of sample cations by the suppressor

column was an even greater problem during divalent cation separation than in

the monovalent cation experiments. Sample precipitation (as hydroxides) is

common, as is physical occlusion of sample cations in the eluent precipitate.

Regeneration of the suppressor and replacement columns was also more time-

consuming because of the type and severity of these reactions involving the

Cu+2. Alternative approaches to solving this problem are currently being

investigated in our laboratory.
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TABLE I

Relative affinities of various cations for the ion-
exchange resin used in replacement column [14]

Ion Relative Selectivity for AG 50W-X8

Li1* 0.85

H+ 1.0

Na+ 1.5

NH4 1.95

K+ 2.5
14g+22.5

CUi+2 2.9

Ca+2 2.9



FIGURE CAPTIONS

Figure 1. Flame photometric detection of 10- 7 _M lithium. Flame coupled

directly to separation column. Eluent: HNOs; pH 2.5; 1.2

mL/mln. Detection limit calculated as 14 nM at a signal-to-

background-noise ratio of 2.

Figure 2. Detection of monovalent cations (1 nm4 each) by RIC. Eluent:

HNO3; pH 2.5; 1.2 mL/min; suppressor column: 12.5 cm x 3 mm

i.d., 100-200 mesh particle size anion exchange resin; replace-

ment column: 12.5 cm x 3 mm i.d., 20-50 mesh particle size

cation exchange resin.
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